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Introduction

This research is to study a super-resolution ultrasound imaging method for breast microcal-
cification detection. The first-years work is primarily focused on Task 1 (Aim 1): Refine, vali-
date and test a super-resolution image reconstruction algorithm using numerical breast phantom
data. We use numerical breast phantom data to validate and test the imaging capability of the
super-resolution ultrasound imaging method for detecting breast microcalcifications. The super-
resolution ultrasound imaging uses the singular value decomposition and a factorization scheme to
achieve an image resolution that is not possible for conventional ultrasound imaging. In addition,
we study breast microcalcification detection using wave-equation reflection/migration imaging and
numerical breast phantoms. Wave-equation reflection/migration imaging can effectively reduce
image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities
during image reconstruction. Wave-equation reflection imaging employs a solution to the acoustic-
wave equation in heterogeneous media to backpropagate ultrasound scattering/diffraction waves to
scatters and reconstruct images of heterogeneities. We construct numerical breast phantoms using
in vivo breast images, and use a time-domain finite-difference wave-equation scheme to generate
ultrasound data scattered from inclusions that mimic microcalcifications. Our numerical phantom
studies demonstrate that microcalcifications can be detected at full spatial resolution using both the
super-resolution ultrasound imaging and wave-equation migration/reflection imaging methods.

Body

During the first year of the project work, we primarily focused on Task 1 (Aim 1): Refine,
validate and test super-resolution ultrasound image reconstruction (SRUI) algorithm, including

a. Refine the theory;
b. Develop the computer program;
c. Generate numerical phantom data;
d. Image reconstruction with numerical phantom data.

We refine the SRUI method by extending it for heterogeneous media. This is important for
in vivo applications. We study the SRUI method for imaging mimic breast calcifications situated
in different masses within heterogeneous breasts. Our preliminary results using numerical breast
phantom data demonstrate that the SRUI method has the potential to detect microcalcifications in
heterogeneous breasts.

We develop a new computer program of the SRUI algorithm. Our super-resolution ultrasound
image reconstruction is based on a factorization method to reconstruct the shape of a scatterer using
the spectral data of the far field operator, i.e. its eigenvalues and eigenfunctions (Kirsch 1998). Our
SRUI algorithm was first developed using MATLAB.We develop a new program code of the SRUI
algorithm using Fortran to significantly improve its computational efficiency. The computational
speed of the new code is approximately two orders of magnitudes faster than that of the MATLAB
code.

We construct numerical breast phantoms based on in vivo breast images. Breast microcalcifi-
cations can be found within a water cyst or an oil cyst occasionally, and within a cancerous mass.
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Breast Calcifications

Figure 1: A mammogram showing breast calcifications as the bright spots within a cyst.
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Figure 2: The sound speed profile of a numerical breast phantom containing five microcalcifica-
tions with diameters of 0.08 mm, 0.20 mm, 0.32 mm, 0.40 mm, and 0.52 mm within a cyst. The
numerical phantom is constructed based on an in vivo ultrasound breast image. The embedded
microcalcifications are shown as the bright spots.
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Breast microcalcifications within a cyst are likely benign, and those within a cancerous mass could
be malignant.

Figure 1 is a mammogram showing breast calcifications within a cyst. We construct a numerical
breast phantom based on Fig. 1, and insert five microcalcifications inside the cyst to study the
imaging capability of the SRUI method for detecting breast microcalcifications. The constructed
numerical breast phantom is shown in Fig. 2.

We generate synthetic ultrasound data scattered from the mimic breast microcalcifications in
Fig. 2 using a finite-difference time-domain method to solve the acoustic-wave equation in hetero-
geneous media. The phantom is scanned at its top surface using a linear ultrasound array with a
size of 5.6 cm and a central frequency of 5 MHz. The central wavelength of the probing ultrasound
is approximately 0.3 mm. Therefore, the sizes of the embedded microcalcifications are smaller
than or in the same order as the ultrasound wavelength, resulting in significant ultrasound diffrac-
tion from the microcalcifications. To satisfy the spatial sampling criterion of ultrasound data (or
two receivers per wavelength) to avoid image aliasing during image reconstruction, it requires at
least 373 elements in the linear transducer array.

We conduct image reconstruction with the numerical phantom data to validate and test our
SRUI algorithm for detecting breast microcalcifications.
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(a) Magnified view of the region with five breast micro-
calcifications in Fig. 2
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(b) Super-resolution imaging with 351 transducer ele-
ments (∼1.9 elements per wavelength)

Figure 3: Magnified view of the region with embedded microcalcifications in Fig. 2 and the cor-
responding super-resolution imaging result obtained using a linear ultrasound array with 351 ele-
ments. All five microcalcifications can be clearly identified.

Figure 3(a) is the magnified view of the region with the embedded breast microcalcifications
within a cyst in Fig. 2. Our super-resolution image of the embedded breast microcalcifications
obtained with 351 transducer elements (or 1.9 elements per wavelength) is displayed in Fig. 3(b).
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This numerical study shows that microcalcifications in a heterogeneous breast can be clearly de-
tected using our super-resolution ultrasound imaging.

In addition to super-resolution imaging, we also study wave-equation migration/reflection imag-
ing for breast microcalcification detection. Breast microcalcifications can be seen in malignant
cancerous masses. We construct a numerical breast phantom in Fig. 4 from an in vivo image
with malignant calcifications. Again, five microcalcifications with sizes ranging from 0.08 mm to
0.52 mm are embedded into the cancerous mass. We use the same finite-difference wave-equation
scheme to generate synthetic data of ultrasound diffraction from the embedded microcalcifications
in Fig. 4. The size and the central frequency of the linear transducer array that scans the breast
phantom at its top surface are the same as those of the previous numerical example.
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Figure 4: The sound speed profile of a numerical breast phantom containing five microcalcifica-
tions with diameters of 0.08 mm, 0.20 mm, 0.32 mm, 0.40 mm, and 0.52 mm within a cancer mass.
The numerical phantom is constructed based on an in vivo ultrasound breast image.

We perform wave-equation reflection/migration imaging with the synthetic ultrasound data
from the numerical breast phantom in Fig. 4. The magnified view of the region with the microcal-
cifications in Fig. 4 is shown in Fig. 5(a), and the corresponding wave-equation reflection imaging
result with 401 transducer elements are displayed in Fig 5(b). All breast microcalcifications are
clearly reconstructed with our wave-equation reflection imaging.

More detailed descriptions of the work on super-resolution ultrasound image reconstruction
and wave-equation reflection/migration imaging with numerical breast phantoms can be found in
Huang et al. (2010) (See Appendix).

In addition to work for Task 1 (Aim 1), we have initiated the work for Task 2 (Aim2). We have
purchased an ultrasound phantom that is designed for testing imaging resolution. Los Alamos
National Laboratory provided funding to purchase a new synthetic aperture ultrasound scanner for
this study. We will acquire phantom and in vivo patient data using the new ultrasound scanner,
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(a) Magnified view of the region with five breast micro-
calcifications shown in Fig. 4.
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(b) Wave-equation reflection imaging with 401 trans-
ducer elements (∼2.1 elements per wavelength)

Figure 5: Magnified view of the region with embedded microcalcifications in Fig. 4 and the cor-
responding wave-equation reflection imaging result obtained with 401 transducer elements of the
linear ultrasound array. All microcalcifications are well imaged.

and use our super-resolution ultrasound imaging and wave-equation reflection imaging methods
to conduct image reconstruction. Finally, the University of New Mexico has developed clinical
protocols for patient scans.

Key Research Accomplishments

1. We have shown using numerical breast phantom data that our super-resolution ultrasound
imaging method has the capability to detect microcalcifications in heterogeneous breasts.

2. We have numerically demonstrated that wave-equation reflection/migration imaging is an-
other potential imaging method for detecting breast microcalcifications.

Reportable Outcomes

Here is a list of reportable outcomes that have resulted from this research:

1. Two proceeding papers were published (Huang et al. 2010; Huthwaite et al. 2010)

2. A poster was presented at the 2010 SPIE Medical Imaging Meeting. The poster received
the Cum Laude Poster Award.
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3. An abstract was submitted to the 2011 SPIE Medical Imaging Meeting, and was accepted.

4. Two abstracts were submitted to the 2011 AIUM Annual Conference.

5. Additional funding was obtained from Los Alamos National Laboratory to purchase a new
synthetic ultrasound scanner to support this research.

Conclusions

We have developed and tested a super-resolution ultrasound imaging method and a wave-
equation reflection/migration imaging method for breast microcalcification detection. We have
demonstrated using numerical breast phantoms that both the super-resolution imaging with the
factorization method and wave-equation reflection imaging can clearly image breast microcalcifi-
cations in heterogeneous breasts. Our numerical phantom studies have shown that both the super-
resolution imaging with the factorization method and wave-equation reflection/migration imaging
have great potential for clinical breast microcalcification detection.
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Detecting breast microcalcifications using super-resolution and
wave-equation ultrasound imaging: A numerical phantom study
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bImperial College London, London SW7 2AZ, UK
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ABSTRACT
Ultrasound image resolution and quality need to be significantly improved for breast microcalcification detection. Super-

resolution imaging with the factorization method has recently been developed as a promising tool to break through the

resolution limit of conventional imaging. In addition, wave-equation reflection imaging has become an effective method

to reduce image speckles by properly handling ultrasound scattering/diffraction from breast heterogeneities during image

reconstruction. We explore the capabilities of a novel super-resolution ultrasound imaging method and a wave-equation

reflection imaging scheme for detecting breast microcalcifications. Super-resolution imaging uses the singular value de-

composition and a factorization scheme to achieve an image resolution that is not possible for conventional ultrasound

imaging. Wave-equation reflection imaging employs a solution to the acoustic-wave equation in heterogeneous media

to backpropagate ultrasound scattering/diffraction waves to scatters and reconstruct images of heterogeneities. We con-

struct numerical breast phantoms using in vivo breast images, and use a finite-difference wave-equation scheme to generate

ultrasound data scattered from inclusions that mimic microcalcifications. We demonstrate that microcalcifications can

be detected at full spatial resolution using the super-resolution ultrasound imaging and wave-equation reflection imaging

methods.

Keywords: Breast microcalcification, diffraction, factorization, reflection, scattering, super-resolution imaging, ultrasound

imaging, wave equation.

1. INTRODUCTION
Microcalcifications, tiny specks of mineral deposits (calcium), are the first sign of breast cancer in more than 30% of all

cases. For example, ductal carcinoma in situ (DCIS) represents approximately 20% of all breast cancers detected by mam-

mography, and approximately 95% of all DCIS is diagnosed because of mammographically detected microcalcifications.

Breast microcalcifications often occur as one of two types: calcium oxalate dihydrate or calcium hydroxyapatite. Their

sizes range approximately from 0.1 mm to 0.5 mm. They can be scattered throughout the mammary gland, or occur in

clusters. Breast microcalcifications may or may not be associated with a tumor and, therefore, they must be detected and

characterized accurately according to their size, number, distribution, and morphology to determine if they are benign or

malignant. Multiple (three to five) microcalcifications within an area of 5 to 10 mm define a cluster of microcalcifications.

The characteristics of benign calcifications include smooth contours, high uniform density, evenly scattered and homoge-

neous, sharply outlined spherical or oval shapes, bilateral and evenly scattered following the course of the ducts throughout

much of the parenchyma, ring-like, hollow, eggshell like, and large and irregular sizes. The three basic forms of malignant

calcifications are casting-type, granular-type and powderish calcifications.1 Breast microcalcifications have no symptoms

that a woman could notice herself, like a lump.

High-resolution imaging of breast microcalcifications is critically important for reliably detecting and characterizing the

benign and malignant calcifications. X-ray mammography is the only imaging modality routinely used for detecting breast

microcalcifications.2–4 However, it is relatively less effective in women with dense breasts, especially in young women.5, 6

Digital mammography optimizes microcalcification detection using image processing. It has been demonstrated that digital

Send correspondence to Lianjie Huang: ljh@lanl.gov
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mammography has at least the equal detection performance of malignant microcalcifications compared to the screen-film

mammography.4, 7

Ultrasound imaging could be an attractive alternative tool for breast microcalcification detection. However, current

clinical ultrasound imaging cannot detect microcalcification due its low image resolution and speckle. Breast microcalcifi-

cations are invisible within the noisy echo texture of either cancerous masses or ductal carcinoma in situ.8–11 To overcome

these limitations, some alternate techniques have been developed.9, 12, 13 Current ultrasound imaging can only reliably

detect large calcifications of several millimeters in size.

Super-resolution imaging with the factorization method has recently been developed to greatly improve ultrasound

image resolution.14, 15 The super-resolution means that the image resolution will be much higher (one order of magnitude

higher) than that of conventional imaging techniques. The super-resolution imaging with the factorization method is based

on singular value decomposition of the so-called multistatic matrix obtained by measuring all the possible transmit-receive

pairs across the aperture of a linear ultrasound array. Only the singular values above the noise threshold are used for image

reconstruction, leading to partial noise suppression and high-resolution images with fewer speckles. The method makes

use of the full waveform of ultrasound data including multiple scattering, as well as a factorization scheme16 to achieve an

image resolution that is not possible for conventional ultrasound imaging. Super-resolution imaging could remedy current

deficiencies of clinical ultrasound in breast microcalcification detection.

An effective approach to image speckle reduction and image resolution improvement is using wave-equation reflec-

tion/migration imaging to properly account for ultrasound scattering/diffraction from breast heterogeneities during image

reconstruction.17–20 Sound speeds and densities of breast tissue are inhomogeneous,21 and those of breast microcalcifica-

tions with sizes range from 0.1–0.5 mm are much higher than the surrounding tissues. These differences in mechanical

properties result in ultrasound scattering. Because the sizes of breast microcalcifications are smaller than or in the order of

the wavelength of probing ultrasound, diffraction waves dominate ultrasound scattering from microcalcifications. Most ul-

trasound imaging is based on the ray theory that is asymptotic approximation of ultrasound wave propagation in the infinite

frequency limit, and cannot correctly deal with ultrasound diffraction. Only wave theory-based ultrasound imaging can

accurately focus diffraction wavefields back to where they are generated so as to reconstruct images of scatters. Therefore,

wave-equation reflection imaging could be a promising tool for breast microcalcification detection.

We explore the capabilities of the super-resolution imaging and wave-equation reflection imaging methods for breast

microcalcification detection using numerical breast phantoms. Microcalcifications can be found in different breast tissues,

such as cancerous masses or cysts. We build two numerical breast phantoms for this study: one containing microcalcifi-

cations within a cyst and the other with microcalcifications inside a cancerous mass. The heterogeneous distributions of

the sound speed and density of the phantoms are constructed based on in vivo patient breast images. A finite-difference

scheme to solve the acoustic-wave equation in heterogeneous media is used to generate numerical ultrasound diffraction

data scattered from microcalcifications. We then conduct image reconstructions of breast microcalcifications using the

super-resolution imaging and wave-equation reflection imaging methods. We show that the super-resolution imaging and

wave-equation reflection imaging have great potential for breast microcalcification detection.

2. METHODOLOGY
Both the super-resolution imaging and wave-equation reflection imaging are based on the solutions of acoustic-wave equa-

tion in heterogeneous media. The super-resolution imaging with the factorization method was proposed by Kirsch16 to

reconstruct images of scatterer shapes. The wave-equation reflection imaging backpropagate/migrate received ultrasound

wavefields to spatial locations where ultrasound scattering wavefields are generated.

2.1 Super-resolution imaging with the factorization method
Kirsch16 proposed a factorization method to reconstruct the shape of a scatterer using the spectral data of the far field

operator, i.e. its eigenvalues and eigenfunctions. The imaging condition of the factorization method at imaging point z is

given by14, 15

I(z) =

(
∞

∑
i=1

1

|μi|
∣∣〈g|ν i〉∣∣2

)−1

, (1)
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where I is the image, μi and ν i are the eigenvalue and eigenfunction of the far field T-matrix operator, respectively, and g
is defined as

g(kr̂) = e−ikr̂·z, (2)

with k being the wavenumber of the probing plane wave, and r̂ being the propagation direction of a scattering wave at the

receiver.

Ultrasound data always contain some noise. Only the eigenvalues above the noise threshold are used for image recon-

struction in Eq. (1). Subwavelength image resolution can be achieved using the factorization method in Eq. (1).15

2.2 Wave-equation reflection imaging
The acoustic-wave equation in heterogeneous media can be decomposed into two one-way wave equations describing wave

propagation in opposite directions. These one-way wave equations in the frequency-space domain are give by

∂U(x,z;ω)
∂ z

= ±iQ(x,z;ω)U(x,z;ω), (3)

where ± are for waves propagating in opposite directions, U is the ultrasound wavefield, ω is the circular frequency, (x, z)
is the space location, and Q is an operator defined by

Q ≡
√

ω2

c2(x,z)
+

∂ 2

∂x2
=

ω
c(x,z)

R, (4)

where c is the sound speed, and R is the square-root operator given by

R ≡
√

1−X2, (5)

with

X2 ≡− c2

ω2

∂ 2

∂x2
. (6)

The formal solution of Eq. (3) is

U(x,z+Δz;ω) = exp

{
±i
∫

Qdz
}

U(x,z;ω), (7)

which extrapolates ultrasound wavefield U from the depth level at z to the next depth level at z+Δz. Different approaches

have been developed to numerically solve Eq. (7).17, 19, 20 Wave-equation ultrasound reflection imaging uses the formal

solution (7) for wavefield continuation to reconstruct images of breast heterogeneities including microcalcifications.

3. IMAGING OF BREAST MICROCALCIFICATIONS
We conduct numerical studies of super-resolution imaging and wave-equation ultrasound reflection imaging for detecting

breast microcalcifications situated in different host tissues, including a cyst and a cancerous mass. Breast microcalcifica-

tions within a cyst are likely benign, and those within a cancerous mass could be malignant. We build numerical breast

phantoms based on in vivo breast images, generate synthetic ultrasound diffraction data emerging from breast microcal-

cifications, and study the imaging capabilities of the super-resolution imaging and wave-equation reflection imaging for

detecting breast microcalcifications.

3.1 Breast microcalcifications within a cyst
Breast microcalcifications can be found within a water cyst or an oil cyst occasionally. Figure 1 is a mammogram showing

breast calcifications within a cyst. We construct a numerical breast phantom based on Fig. 1, insert five microcalcifications

inside the cyst. Fig. 2 is the sound speed profile of the phantom. The breast sound speed varies from 1500 m/s to 1530 m/s,

and the sound speed of the microcalcifications is 1800 m/s. The sizes of microcalcifications range from 0.08 mm to

0.52 mm. The phantom is scanned at the top surface of the phantom using a linear ultrasound array with a size of 5.6 cm

and a central frequency of 5 MHz. The central wavelength of the probing ultrasound is approximately 0.3 mm. Therefore,

the sizes of the embedded microcalcifications are smaller than or in the order of the ultrasound wavelength, resulting in

Proc. of SPIE Vol. 7629  762919-3
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Breast Calcifications

Figure 1: A mammogram showing breast calcifications as the bright spots within a cyst.
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Figure 2: The sound speed profile of a numerical breast phantom containing five microcalcifications with diameters of

0.08 mm, 0.20 mm, 0.32 mm, 0.40 mm, and 0.52 mm within a cyst. The numerical phantom is constructed based on an in
vivo ultrasound breast image. The embedded microcalcifications are shown as the bright spots.

ultrasound diffraction from embedded microcalcifications. To satisfy the spatial sampling criterion of ultrasound data (or

two receivers per wavelength) to avoid image aliasing during image reconstruction, it requires at least 373 elements in the

linear transducer array.

We use a staggered-grid finite-difference scheme to solve the acoustic-wave equation in heterogeneous media, and

generate ultrasound scattering/diffraction data for the numerical breast phantom in Fig. 2. We then conduct super-resolution

imaging with the factorization method using the synthetic ultrasound data. Figure 3(a) is the magnified view of the region

with the embedded breast microcalcifications in Fig. 2. Super-resolution images of breast microcalcifications obtained with

701, 351, and 201 transducer elements (or 3.75, 1.9, and 1.1 elements per wavelength) are shown in Figs. 3(b)-(d). The

microcalcifications can be clearly detected from Figs. 3(b)-(d) even though the image artifacts increase with the decreasing

number of transducer elements used. The image artifacts are particularly pronounced when only 201 elements are used.

An image anti-alias approach is needed for the this case to improve image quality.

We next conduct wave-equation reflection imaging. Wave-equation imaging produces images with phase that can be

transformed into envelope images. Figure 4 shows our wave-equation reflection imaging results obtained using 401 and

Proc. of SPIE Vol. 7629  762919-4
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(a) Magnified view of the region with five breast mi-

crocalcifications in Fig. 2
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(b) Super-resolution imaging with 701 transducer ele-

ments (∼3.75 elements per wavelength)
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(c) Super-resolution imaging with 351 transducer ele-

ments (∼1.9 elements per wavelength)

0

1

2

3

4

5

Y
 (

m
m

)
0 1 2 3 4 5

X (mm)

(d) Super-resolution imaging with 201 transducer ele-

ments (∼1.1 elements per wavelength)

Figure 3: Magnified view of the region with embedded microcalcifications in Fig. 2 and the corresponding super-resolution

imaging results with different numbers of transducer elements of the linear ultrasound array. All five microcalcifications

can be clearly identified. Image artifacts increase with decreasing numbers of the transducer elements used for imaging.

201 elements. All five microcalcifications are well imaged, including their round shapes. Some weak image artifacts

are caused by the limited length of the linear transducer array. This numerical example demonstrates that wave-equation

reflection imaging is a powerful tool for detecting microcalcifications and reconstructing shapes of breast anomalies.

3.2 Breast microcalcifications within a cancerous mass
The numerical breast phantom in Fig. 5 is constructed from an in vivo image with malignant calcifications. Again, five

microcalcifications with sizes ranging from 0.08 mm to 0.52 mm are embedded into the cancerous mass. We use the same

finite-difference wave-equation scheme to generate synthetic data of ultrasound diffraction from the embedded microcalci-

fications. The size and the central frequency of the linear transducer array that scans the breast phantom at the top surface

are the same as those of the previous numerical example.
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(a) Image with phase obtained using wave-equation

reflection imaging with 401 transducer elements
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(b) Image with phase obtained using wave-equation
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(c) Envelope image obtained using wave-equation re-

flection imaging with 401 transducer elements

(∼2.1 elements per wavelength)
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(d) Envelope image obtained using wave-equation re-

flection imaging with 201 transducer elements

(∼1.1 elements per wavelength)

Figure 4: Wave-equation reflection imaging results with different numbers of transducer elements of the linear ultrasound

array. In the images with phase in (a) and (c), the white color is for the positive image values, and the black color is for the

negative image values. All five microcalcifications are well imaged, even when only 201 transducer elements are used.

We perform wave-equation reflection imaging with the synthetic ultrasound data. The magnified view of the region

with the microcalcifications in Fig. 5 is shown in Fig. 6(a), and the corresponding wave-equation reflection imaging results

with 401, 201, and 128 transducer elements are displayed in Figs. 6(b)-(d), respectively. All breast microcalcifications

are clearly reconstructed, even when only 128 transducer elements are used. This demonstrates the robustness of wave-

equation reflection imaging for microcalcification detection.

The higher the ultrasound frequency, the better is the image resolution. Our numerical imaging examples use a 5 MHz

ultrasound scanner. In clinical applications, a 10 MHz ultrasound scanner can be used for breast microcalcification imaging,

and the image resolution of both the super-resolution imaging and wave-equation reflection imaging could be better than
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Figure 5: The sound speed profile of a numerical breast phantom containing five microcalcifications with diameters of

0.08 mm, 0.20 mm, 0.32 mm, 0.40 mm, and 0.52 mm within a cancer mass. The numerical phantom is constructed based

on an in vivo ultrasound breast image.

the numerical examples shown in this paper. On the other hand, the data noise and three-dimensional effects of ultrasound

scattering could reduce image resolution.

3.3 Image artifacts of wave-equation reflection imaging
To clearly show image artifacts of wave-equation reflection imaging, we display in Fig. 7 the images with phase for the

entire breast phantom in Fig. 5 obtained using 401, 201, and 128 transducer elements. The image quality within the

region containing the five breast microcalcifications in Figs. 7(a)-(c) is similar to one another, and the image artifacts

appear outside that region in Figs. 7(b) and (c) when the spatial sampling criterion of ultrasound data is not satisfied.

Therefore, even only using 201 or 128 transducer elements, wave-equation reflection imaging can still clearly image breast

microcalcifications when they are located beneath the central region of the linear transducer array.

4. CONCLUSIONS
Breast microcalcifications cause ultrasound diffraction, and only wave-theory-based ultrasound imaging methods can prop-

erly handle ultrasound diffraction to correctly reconstruct images of microcalcifications. We have demonstrated using

numerical breast phantoms that both the super-resolution imaging with the factorization method and wave-equation reflec-

tion imaging can clearly image breast microcalcifications in the heterogeneous breast. In clinical applications, a linear

ultrasound transducer array consists of 128 to 512 elements. When the spatial sampling criterion of ultrasound data is

not satisfied when using low numbers of elements, image artifacts could appear. An anti-alias image filter could be de-

signed to reduce image artifacts. However, even when the criterion is not met, wave-equation reflection imaging can still

clearly image breast microcalcifications if they are located beneath the central region of the linear ultrasound array. Both

the super-resolution imaging with the factorization method and wave-equation reflection imaging have great potential for

clinical breast microcalcification imaging.
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(a) Magnified view of the region with five breast mi-

crocalcifications shown in Fig. 5.
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(b) Wave-equation reflection imaging with 401 trans-

ducer elements (∼2.1 elements per wavelength)
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(c) Wave-equation reflection imaging with 201 trans-

ducer elements (∼1.1 elements per wavelength)
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(d) Wave-equation reflection imaging with 128 trans-

ducer elements (∼0.68 elements per wavelength)

Figure 6: Magnified view of the region with embedded microcalcifications in Fig. 5 and the corresponding wave-equation

reflection imaging results with different numbers of transducer elements of the linear ultrasound array. All microcalcifica-

tions are well imaged even when only 128 transducer elements are used.
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